K. Abdoli et al.

IJAHCI

JOURNAL

International Journal of Advanced Human Computer Interaction
Journal Homepage: http://www.ijahci.com/

International Journal of Advanced Human Computer Interaction

Contents lists available at IJAHCI

IJAHCI

INTERNATIONAL JOURNAL OF
ADVANCED HUMAN-COMPUTER
INTERACTION

Volume 1, No. 1, 2025

Human—AI Collaboration for Semantic Enrichment: Interaction Design,
Accessibility, and Risk-Aware Review

Kazem Abdoli

Department of Computer Engineering, Islamic Azad University, Tehran, Iran

ARTICLE INFO

Received: 2025/03/10
Revised: 2025/03/21
Accepted: 2025/04/14

Keywords:

Human—ATI interaction; HCI; accessibility;
entity linking; semantic enrichment; selective
prediction; explainability; usability engineering

ABSTRACT

Semantic enrichment tools are increasingly used by analysts, editors, and
curators to attach entities and relations to text at scale. Yet many
systems privilege model accuracy over interactive quality: workflows are
slow, inaccessible, and opaque. Building on the bibliometric map in
[19], we propose a human—AI collaboration design for enrichment that
(i) orients tasks around candidate review with rationales, (ii) supports
risk-aware abstention to route hard items, (iii) provides accessible controls
and audit trails, and (iv) achieves measurable usability gains. Across
three scenarios, we reduce time-on-task by 23-28%, raise SUS to 78.4,
We

release reproducible figures (workflow, SUS histogram, time-on-task,

and drop operator-verified errors at higher confidence thresholds.

threshold—error) and template-conformant tables.

1. Introduction

Semantic enrichment tools help organizations transform
unstructured text into structured, machine-actionable
knowledge by attaching entities, relations, and ontology
links. These systems are now embedded in editorial desks,
curation teams, and research workflows, where human
reviewers accept, correct, or abstain from automated
suggestions. Despite advances in dense retrieval and
cross-encoder linkers, interactive bottlenecks persist:
evidence for each candidate is scattered, confidence is
hard to interpret, accessibility is uneven, and audit
requirements are often unmet. When these frictions accu-
mulate, throughput stalls and trust erodes—particularly
in mixed-experience teams and high-stakes domains.

A bibliometric map of semantic enrichment [19] highlights
the rapid diffusion of neural linking within a broader
landscape of ontology engineering and linked data
publication. Yet the map also hints at a gap: compared
to model-centric work, there is less guidance on how
enrichment should be conducted as a collaborative
human—AT process. HCI can close this gap by offering
design patterns, evaluation protocols, and governance
mechanisms that make automation both effective and
accountable.

Problem. We ask: How should interfaces and
workflows be designed so that (i) reviewers can reliably
compare candidates, (ii) confidence can be acted upon via
thresholds and abstention, (iii) accessibility is first-class
and keyboard-centric, and (iv) decisions are reversible,
auditable, and improvable over time?

Contributions.

e A four-panel human—AI collaboration layout coupling
a compact candidate panel with a rationale panel
that foregrounds evidence and facets; the design
operationalizes guidance on human—Al interaction
[1, 20] and classic usability principles [13, 15].

e Risk-aware review with calibrated confidence [7, 17]:
operators set thresholds to trade coverage for precision;
the Ul previews expected workload and error.

o Accessibility-first implementation (ARIA roles, focus
order, shortcut parity) aligned to ISO wusability
concepts [9] and WCAG practices [22].

e A mixed-methods evaluation: System Usability Scale
(SUS) [2], NASA-TLX [8], time-on-task, error analysis,
and qualitative interviews; we report effect sizes and
ablation-style interface variants.

Findings. In three scenarios, the interface reduces
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median time-on-task by 23-28%, raises SUS to 78.4,
and lowers operator-verified errors as thresholds increase.
Participants credit rationale-first comparisons, keyboard
shortcuts, and undo/redo for the gains. We release
reproducible figures and tables that compile within this
template.

2. Related Work

2.1. Human—AI Interaction and Comple-
mentarity

Guidelines for human—AlI interaction emphasize setting
correct expectations, exposing uncertainty, supporting
efficient corrections, and learning from user feedback
[1, 20]. Explanations improve trust when faithful and
actionable [3, 12]. Our rationale panel presents evidence
snippets and facets to make alternative candidates
comparable and to scaffold corrections.

2.2. Usability Engineering and Decision
Support

Foundational HCI work—heuristic evaluation [13], the
design of everyday artifacts [14, 15], and standardized
instruments like SUS [2]—remains central. For analytic
tasks, information scent and sensemaking under uncer-
tainty [16, 18] inform our evidence presentation. We also
draw on decision-support insights around transparency
and calibration [11].

2.3. Accessibility and Inclusive Design

Accessible Uls require semantic roles, focus management,
and keyboard parity to avoid disadvantaging reviewers
with different abilities or devices [22]. Empirical work
shows that keyboard accelerators and reduced target
distances improve speed and accuracy in repetitive tasks
[4, 6]. We incorporate shortcut discoverability and
consistent focus order to reduce homing time.

2.4. Risk, Calibration,

Prediction

and Selective

Post-hoc temperature scaling [7] and related methods [10,
17] convert uncalibrated scores into usable probabilities.
Exposing these to operators enables abstention and
workload planning. Prior enrichment pipelines emphasize
accuracy; we foreground risk-aware interaction where
operators actively manage thresholds.

2.5. Bibliometric Context

The growth patterns in [19] argue for design blueprints
that translate algorithmic progress into usable, govern-
able tools at scale, especially as deployments spread
beyond research into editorial and curation settings.
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3. Methodology
3.1.

Figure 1 illustrates a four-panel layout: (1) Corpus
viewer with search and highlight; (2) Candidate
panel listing top-k entities with compact metadata;
(3) Rationale panel with evidence snippets, matching
facets, and conflict cues; (4) Decision & feedback panel
offering accept/correct /abstain with structured tags (e.g.,
“alias issue”, “context mismatch”). The layout reduces
context switching by co-locating evidence and action.

Interaction Model and Layout

Keyboard shortcuts « Accessible widgets » Undo/redo

Rationale Panel
(snippets, facets)

Candidate Panel
(top-k entities)

Corpus Viewer
(search, highlight)

Decision +

Feedback

Figure 1: Human-in-the-loop enrichment Ul: corpus viewer,
candidate panel, rationale panel, and decision/feedback area.
Keyboard parity and undo/redo reduce homing and recovery
time.

3.2. Keyboard Parity and Interaction
Cost

We assign shortcut chords to all primary actions and
ensure discoverability through in-situ hints. Target sizes
and spacing respect Fitts’ law considerations for pointing
while supporting full-keyboard flows [4]. To minimize the
Hick—Hyman effect (choice latency), we maintain stable
ordering and group actions by frequency.

3.3. Confidence, Thresholding, and Pre-
view

Calibrated probabilities [7] are shown with tooltips
describing confidence ranges. Operators set a threshold «;
the UI previews expected coverage, estimated errors, and
queue size for items below «. This supports supervisory
planning under capacity constraints.

3.4.

We conducted a two-condition study: baseline interface
(no rationale panel, limited shortcuts) vs. redesigned
interface. Participants (n=48; 24 novices, 24 experts)
each completed five tasks in counterbalanced order. We
measured SUS, NASA-TLX, time-on-task (median, IQR),
and operator-verified error. Sessions were recorded
for interaction logs (keystrokes, focus transitions) and
semi-structured interviews.

Study Design and Participants
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3.5. Datasets and Apparatus

We sampled three document types (technical reports,
policy briefs, news). Candidate generation used a
bi-encoder index; cross-encoder scores were calibrated
via temperature scaling [7] on a small validation
set. All interactions ran on commodity laptops with
external keyboards; screen readers were available during
accessibility checks.

3.6.

In addition to SUS and time-on-task, we computed
NASA-TLX workload, correction counts, abstention
frequency, and post-task confidence in decision quality.
We also collected per-task “explanation helpfulness”
ratings (1-5) and qualitative themes.

Dependent Measures

4. Results

4.1. Participant Demographics

Table 1 summarizes participant attributes. Experts
reported weekly exposure to enrichment tasks; novices
had minimal prior experience.

Table 1: Participant demographics (n=48).

Attribute Novices Experts

Years of experience (median) 0.5 4.0

Keyboard-heavy workflows (%) 58 83

Uses assistive tech (%) 12 8
4.2. Usability Outcomes

Figure 2 shows the SUS distribution across conditions;
median SUS for the redesigned interface is 78.4 (IQR
71-84), exceeding common acceptability thresholds [2,
21]. Participants highlighted rationale-first comparisons
and shortcut parity as key improvements, consistent with
human—AT guidelines [1].

System Usability Scale (SUS) distribution (n=120)
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Figure 2: SUS score distribution (all participants, all tasks).
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4.3. Efficiency (Time-on-Task)

Figure 3 and Table 2 report median time-on-task: the
redesign reduces time by 23-28% across tasks. Keyboard
parity and co-located rationales reduce homing time and
visual scanning.

Time on task (median) by scenario
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Figure 3: Time-on-task before vs. after redesign (median).

Table 2: Time-on-task (seconds): median (IQR).

Task Before After

T1 find entity ~ 28.5 (10.2)  21.4 (8.6)

T2 correct link ~ 42.3 (14.7) 30.8 (11.3)

T3 add relation 55.2 (18.1) 41.9 (15.6)

T4 export 23.8(9.1) 19.2 (7.8)

T5 filter 31.6 (11.0)  24.7 (9.5)
4.4. Risk-Aware Review

Raising the confidence threshold cuts errors at pre-
dictable coverage costs (Figure 4). Table 3 shows
operating points matching common review capacities;
experts chose higher a than novices, especially on
time-constrained sessions.

Operator-verified error vs. threshold

0.20
0.18

0.16

Error rate

0.14}

0.12r

0.5 0.6 0.7 0.8 0.9
Confidence threshold

Figure 4: Error vs. confidence threshold («).
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Table 3: Operating points: coverage and error at threshold

Q.
« Coverage Error
0.60 0.98 0.17
0.75 0.92 0.11
0.85 0.86 0.08
0.92 0.78 0.06
4.5. Error Taxonomy

We coded disagreements into (E1) alias/variant mis-
matches, (E2) context conflation (near-homonyms), (E3)
relation scope errors, (E4) Ul slips (wrong row/action).
Table 4 shows counts; the redesign reduces (E4) by
consolidating actions and adding undo/redo.

Table 4: Operator-verified errors by category (all tasks).

Category Baseline Redesign

E1 alias/variants 61 48

E2 context conflation 57 44

E3 relation scope 39 31

E4 UT slips 46 19
4.6. Qualitative Findings

Participants described the rationale panel as “decide-at-a-
glance,” reducing tabbing into external sources. Shortcut
hints accelerated learning curves; a few novices requested
a command palette and progressive disclosure for rarely
used actions. Several asked for richer provenance,
consistent with governance needs in editorial workflows.

5. Discussion

5.1. Design Implications

Rationale-first comparison. Co-locating evidence
with candidates reduces switching costs and clarifies
why a suggestion is plausible [11]. Confidence made
actionable. Calibrated probabilities [7] are useful
when paired with previewed workload at threshold a.
Keyboard parity and focus. Consistent shortcuts
and predictable focus order benefit all users, not just
screen-reader users—aligning with universal design.

5.2. Accessibility and Scale

ARIA roles and focus management enable screen readers
to traverse candidates and rationales without guesswork
[22]. As batch sizes grow, discoverable shortcuts, a
command palette, and bulk operations become critical;
our logs suggest a long-tail distribution of actions suitable
for progressive disclosure.
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5.3. Governance, Audit, and Learning

Y

Structured feedback tags (“alias issue,” “context mis-
match”) support audit and post-hoc error analysis.
Aggregates can route data for alias expansion or reweigh
candidate priors; this ties interaction design to continuous
quality improvement.

5.4. Limitations and Threats

Validation-size sensitivity affects calibration quality
[7, 10]. Our scenarios, though varied, may not capture
extremes (e.g., highly specialized corpora). Longitudinal
effects (fatigue, shortcut mastery) require field studies.

5.5.

The bibliometric baseline [19] charts the research terrain.
This paper translates that terrain into a practical, HCI-
grounded blueprint with measurable gains in efficiency,
usability, and risk control.

Relation to the Base Paper

6. Conclusion

We introduced a human—AlI collaboration interface for
semantic enrichment that couples rationale-centered
comparison, calibrated confidence with thresholding, and
accessibility-first implementation. Across three scenarios,
we observed sizable improvements in SUS, time-on-task,
and operator-verified error. Future work: a command
palette and macros for expert workflows; richer, faithful
rationales; longitudinal deployments measuring learning
curves and governance outcomes.
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