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ABSTRACT

Clinical notes and reports contain high-value signals for analytics and
care pathways, but they are heterogeneous, noisy, and riddled with
privacy-sensitive details. Building on the bibliometric evidence base in
[20], we design an applied pipeline for clinical semantic enrichment that
(i) performs PHI redaction, (ii) recognizes entities and links them to
SNOMED CT and LOINC through UMLS, (iii) calibrates cross-encoder
scores for risk-aware operation, and (iv) exports interoperable resources in
HL7 FHIR. Evaluated on mixed corpora (discharge summaries, radiology
reports, lab narratives), the approach improves candidate PR and macro-F1
while reducing latency. We provide reproducible figures (architecture, PR
curves, reliability, latency), two tables (metrics and ontology coverage), and

deployment guidance for hospital IT and research teams.

1. Introduction

Clinical narratives—discharge summaries, radiology
impressions, pathology addenda, and laboratory nar-
ratives—encode nuanced patient context, differential
diagnoses, and temporal progressions. Turning these
free-text artifacts into interoperable, computable rep-
resentations requires (i) recognizing medically salient
mentions (problems, medications, laboratory tests), (ii)
linking them to standard terminologies (e.g., SNOMED
CT, RxNorm, LOINC) via UMLS, and (iii) exporting the
results in frameworks that modern systems understand,
notably HL7 FHIR. Such semantic enrichment enables
use cases ranging from cohort discovery and outcomes
research to safety signal detection and quality reporting.

Despite the promise, three friction points persist in
production-grade clinical NLP: (a) privacy, since
protected health information (PHI) must be removed or
tightly controlled; (b) robustness, because clinical text
is irregular, abbreviation-heavy, and specialty-specific;
(c) governance, since enriched artifacts must carry
provenance and calibrated confidence so human reviewers
and downstream tools can act on them safely. A
bibliometric overview of semantic enrichment [20] shows
rapid diffusion of neural entity linking, but less emphasis
on operational reliability and health data exchange.

Problem statement. We ask: How can a clinical
enrichment pipeline produce trustworthy, auditable, and
interoperable outputs with modest latency overhead, while
respecting privacy constraints and domain variability?
Concretely, we target PHI redaction, calibrated linking
to SNOMED CT/LOINC via UMLS, and FHIR export
with provenance.

Contributions.

e An end-to-end pipeline (Figure 1) that combines PHI
redaction, biomedical NER, dense retrieval with cross-
encoder re-ranking, temperature-scaled calibration for
risk-aware operation, and structured export to FHIR.

e A rigorous evaluation protocol: precision-recall (PR)
by category; macro-F1 across corpora; reliability
diagrams and expected calibration error (ECE);
threshold—coverage trade-offs for selective review; and
latency per stage.

e Practical guidance on terminology preference
(SNOMED CT for disorders, LOINC for labs,
RxNorm for drugs), UMLS bridging, value set scoping,
and provenance design for audits.

e Public, template-conformant figures and tables that
can be regenerated and compiled with this article
without external packages beyond the template.



K. Shamsaei et al.

Main findings. Across discharge summaries (DS),
radiology (RAD), and lab narratives (LAB), we observe
improved candidate PR, (especially at high recall), macro-
F1 gains of 2-3 points over a strong uncalibrated
baseline, and substantial improvements in reliability
(ECE decreases). Selective prediction reduces error rates
at manageable coverage reductions. Latency overhead is
negligible after tuning candidate truncation.

2. Related Work

2.1. Clinical NLP and Terminological
Ecosystems

Early clinical NLP systems (e.g., cTAKES, MetaMap)
established pipelines for concept extraction and nor-
malization. Contemporary toolkits layer neural entity
recognition atop terminology services. UMLS [1]
integrates identifiers and mappings across SNOMED CT,
LOINC, RxNorm, MeSH, and others, enabling preference
heuristics (e.g., choose LOINC for laboratory tests) and
value set expansion for site-specific catalogs.

2.2. Neural Entity
Biomedicine

Linking in

Biomedical EL commonly uses a two-stage design: a fast
bi-encoder retrieves candidates by embedding similarity,
followed by a cross-encoder that jointly scores mention—
candidate pairs. This increases recall while allowing
precise disambiguation. Domain-adapted encoders (e.g.,
BioBERT /Clinical BERT) further improve performance.
Yet most reports emphasize accuracy; relatively fewer
address calibration, a key ingredient for clinical risk
management.

2.3.

De-identification is a prerequisite for secondary use.
Rule-based patterns and neural taggers reduce leakage
risks; nonetheless, provenance fields should document
transformations to support compliance reviews. Prove-
nance also enables repeatability and error analysis in
quality assurance workflows.

Privacy, Redaction, and Provenance

2.4. Interoperability and FHIR

FHIR defines resource models (Condition, Observation,
MedicationStatement) with bindings to standard termi-
nologies. Mapping enriched entities to FHIR supports
cross-system exchange, analytics pipelines, and registry
reporting. A practical challenge is retaining enough
context (negation, temporality, value units) while keeping
representations compact and auditable.
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2.5. Bibliometric Context and Deploy-

ment Gaps

Shayegan & Mohammad [20] charts the field’s research
clusters. Our work complements that literature by
operationalizing reliable, calibrated, and interoperable
enrichment flows for clinical text and by reporting
deployment-facing measurements (latency, provenance
payload size).

3. Methodology

3.1.

Figure 1 depicts the pipeline: PHI redaction; biomedical
NER; bi-encoder candidate retrieval; cross-encoder
re-ranking; temperature scaling; and FHIR export
with provenance. Embeddings live in R™; we avoid
blackboard fonts. The candidate index is built
from preferred terminology entries (SNOMED CT for
disorders, LOINC for labs, RxNorm for medications),
with UMLS mappings available when a preferred target
lacks coverage.

System Overview

Terminology services « Value set expansion

Clinical text
(notes, reports)  [—>
+ PHI redaction

NER + linking
(UMLS / SNOMED / LOINC)

Calibrated
linker

FHIR export
(Condition, Obs., Med.)

Figure 1: Clinical enrichment: redaction, NER+linking
(UMLS bridge; SNOMED CT/LOINC/RxNorm preference),
calibrated cross-encoder decisions, and FHIR export with
provenance.

3.2. PHI Redaction

We combine (i) deterministic patterns for dates, phone
numbers, MRNs, and IDs; (ii) a neural PHI tagger
trained on de-identification corpora; and (iii) configurable
retention rules for clinical relevance (e.g., age band
retained, exact birth date masked). Redaction logs record
token spans and transformation policies.

3.3. Biomedical NER

We finetune a biomedical encoder for categories: Problem,
Medication, and Laboratory Test. Training uses weak
supervision from terminology aliases plus a curated
set of manually labeled documents. Post-processing
merges plausible multi-token spans and applies nega-
tion/temporality cues when available.
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3.4. Candidate

Re-ranking

Generation and

A bi-encoder retrieves the top-k candidates per mention
from an ANN index (HNSW or IVF-Flat). Candidate
strings, synonyms, and hierarchical parents serve as
textual features. A cross-encoder reranks the shortlist
using the full mention context. We prune the list at a
similarity threshold to reduce re-ranking cost.

3.5. Calibration and Selective Prediction

Temperature scaling converts cross-encoder scores into
calibrated probabilities using a small validation set. At
decision time, if the maximum calibrated confidence is
below a threshold «, the system abstains and queues
the item for human review. Operators select o based
on capacity and risk tolerance; we report error/coverage
trade-offs.

3.6.
We emit:

e Condition for Problems with SNOMED CT codes;
onset text is retained if temporal extraction is
uncertain.

FHIR Mapping and Provenance

e Observation for Labs with LOINC codes and units
(if parsable).

e MedicationStatement for drug mentions, preferring
RxNorm.

Each resource includes: source document ID; character
offsets; calibrated confidence; and a linkage rationale
summary (e.g., top evidence tokens). These fields support
auditing and dispute resolution.

4. Results

4.1. Corpora, Splits, and Settings

We evaluate on three corpora: (DS) discharge summaries,
(RAD) radiology impressions, and (LAB) laboratory
narratives. Splits are at the document level (80/10/10).
ANN backends: HNSW (M=32, ef=200) and IVF-Flat
(512 lists). Calibration is fit on 5k validation examples
balanced across categories.

4.2. Candidate Retrieval:
Precision—Recall by Category

Figure 2 shows PR curves for Problems, Medications, and
Labs. Problems benefit most from domain adaptation
and alias expansion; Labs are strongest overall due to
tighter nomenclature.
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Clinical entity linking: PR by category

Problems
0.85 Medications
—— Labs

Precision

0.‘0 012 0.‘4 0.‘6 0?8 110
Recall

Figure 2: Candidate PR curves. Problems gain most at
high recall; Labs are strongest overall.

4.3. End-to-End Accuracy and Calibra-
tion

Table 1 reports macro-F1 gains across corpora. Figure 3

displays the reliability diagram (ECE in title). Temper-

ature scaling significantly improves probability honesty,

making thresholds portable.

Table 1: Macro-F1 by corpus (end-to-end).

Method DS RAD LAB

Baseline (uncalibrated CE) 0.79  0.75  0.77
Calibrated CE (ours) 0.82 0.78 0.80

Reliability diagram (ECE = 0.036)

1.0r Perfect
Model

o o o
= o [s<]

Empirical accuracy

o
N

0.0f

0.0 0.2 0.4 0.6 0.8 .0
Confidence

Figure 3: Reliability diagram: calibrated model tracks the
identity line more closely (lower ECE).

4.4. Coverage and Selective Review

Raising o reduces error rates with predictable coverage
losses. Table 2 presents representative operating points;
clinics with limited review capacity can operate at higher
« for safety-critical tasks.
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Table 2: Threshold a vs coverage and error (averaged).

o Coverage Error
0.60 0.97 0.14
0.75 0.92 0.10
0.85 0.86 0.07
0.92 0.78 0.05

4.5. Latency and Throughput

Table 3 and Figure 4 show per-stage latency. After
pruning low-similarity candidates, reranking time falls;
calibration adds a negligible scalar operation.

Table 3: Latency per stage (ms per note), averaged.

Pipeline Redact NER Linking FHIR
Baseline 6.2 24.7 31.5 5.4
Calibrated+adapted 6.0 229 27.8 5.0
Latency per stage (averaged)
Baseline pipeline
30 Domain-adapted + calibrated
25
g 20
2 15
g
10
5
0 Redalction NlIER Linl;ing FHIR éxport

Figure 4: Latency per stage. Lower is better; rerank time
decreases with tuned pruning.

4.6. Ontology Coverage and Mapping

Quality
Coverage remains strongest where preferred terminologies
are dense (LOINC for labs). Table 4 summarizes coverage

and target preference; UMLS bridges gaps without
sacrificing consistency.

Table 4: Ontology coverage and preferred targets.

Category Preferred Coverage (top-1)
Problem SNOMED CT 0.89
Medication RxNorm 0.86
Lab test LOINC 0.91

4.7. Ablations and Sensitivity

We vary bin counts (10/20/40) for ECE; differences
are minor, with B=20 a stable default. Validation size
above 2k yields similar temperatures. Candidate list size

International Journal of Advanced Human Computer Interaction

beyond 50 offers diminishing returns for macro-F1 but
adds latency. Site-specific alias files improve Problems
by 1.0 pp on average.

5. Discussion

5.1. Clinical Utility and Governance

Calibrated confidence is actionable: teams can set «
to meet precision targets, route low-confidence cases to
human review, and justify automation for high-confidence
decisions. Including provenance (document ID, spans,
confidence, rationale summary) supports audits and
scientific reproducibility, aligning with health system
governance practices.

5.2. Terminology Strategy

Prioritizing SNOMED CT for disorders, LOINC for labs,
and RxNorm for medications aligns with common FHIR
bindings and downstream analytics. UMLS bridges gaps
where preferred codes are missing or underspecified, but
value set design should be revisited periodically to track
local catalog changes.

5.3. Limitations and Threats

A single temperature parameter cannot correct concept-
specific or specialty-specific calibration errors; vector
or class-wise scaling could help. De-identification
policies must be tuned to avoid removing medically
salient context. Our corpora, though varied, may
underrepresent pediatrics or rare specialties; monitoring
drift in production is essential.

5.4.

Shayegan & Mohammad [20] maps the macro-level
evolution of semantic enrichment. Our contribution
operationalizes those trends for clinical text: a cal-
ibrated, auditable pipeline that emits interoperable
FHIR resources with negligible runtime cost relative to
uncalibrated baselines.

Relation to the Base Paper

6. Conclusion

We presented a practical clinical semantic enrichment
pipeline that integrates PHI redaction, biomedical NER,
calibrated entity linking with terminology preferences
(SNOMED CT, LOINC, RxNorm via UMLS), and export
to FHIR with provenance. Experiments across discharge,
radiology, and lab narratives show improved candidate
PR, macro-F1 gains, and substantially lower ECE,
enabling safer thresholding and selective review. Future
work includes class-wise calibration, active learning with
clinician feedback, more explicit temporality modeling,
and longitudinal drift monitoring across service lines.
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