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ABSTRACT

Artificial intelligence (Al) is increasingly embedded in clinical
decision support (CDS) systems for triage, diagnosis, and care
planning. Yet, improvements in model performance do not
automatically translate into safer or better clinical decisions. In
high-stakes environments such as emergency departments
(EDs), the success of CDS hinges on human—computer
interaction (HCI): how information is presented, when and how
recommendations arrive, and how accountability, oversight, and
feedback are managed within complex workflows. This paper
advances a comprehensive HCI framework for human—AT
collaboration in CDS across three layers: (1) information design
(uncertainty-forward summaries, contrastive explanations,
progressive disclosure), (2) coordination design
(workflow-aligned timing, interruption management, handoff
support), and (3) governance design (provenance, auditability,
and clinician override as first-class operations). We report
findings from a mixed-methods program: 36 hours of contextual
inquiry in two EDs; two controlled studies with 72 clinicians
comparing uncertainty encodings and explanation patterns; and
an eight-week field deployment of a modular interface layer
running in shadow mode over an existing risk-prediction model.
The interface variants with uncertainty-aware summaries and
counterfactual explanations produced a statistically significant
reduction in over-treatment (-14%, p < .05), improved trust
calibration (+27% reduction in calibration error, p < .01), and
decreased handoff screen-switching (—22%). The deployment
preserved decision time within operational thresholds (median

change +6s, n.s.) and reduced post-hoc diagnostic revisions
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(-19%). We surface risks, including automation bias induced by
persuasive explanations and alert fatigue from mistimed
prompts, and we propose concrete mitigations. The paper
contributes: a rigorously evaluated design framework; reusable
UI patterns with parameterizations for uncertainty and
contrastive reasoning; and a governance checklist to support

safe adoption, audit, and continual improvement.

1. Introduction

CDS systems increasingly leverage Al models trained on multimodal clinical data to provide risk
scores, differential diagnoses, and treatment suggestions. However, clinical practice is a deeply
social, time-bound, and accountability-laden activity where decisions emerge from distributed cog-
nition across people, artifacts, and protocols. In this setting, HCI is central: the design of how Al
communicates and coordinates can amplify clinician strengths or exacerbate error modes such as
automation bias, tunnel vision, and alert fatigue.

We focus on the ED because it compresses uncertainty, time pressure, incomplete data, and
frequent interruptions. Our goal is not to maximize adherence to Al advice, but to improve cali-
brated reliance: clinicians should lean on AI when warranted by evidence and context, and ignore

or override it when not. We therefore pose three design questions:

1. Information: How should AT uncertainty and supporting evidence be summarized to improve

calibrated trust without overloading attention?

2. Coordination: How should timing, modality, and granularity of recommendations align with

ED workflows, including handoffs and documentation?

3. Governance: Which interface-level affordances enable provenance, auditability, and safe

override that respects institutional policy and medicolegal constraints?

We present a modular interface layer that can sit atop existing CDS algorithms. The layer
embodies a three-part framework (information, coordination, governance) and a set of UI patterns
(uncertainty badges with numeric ranges; counterfactual explanations; progressive disclosure via
evidence cards; interruption-aware banners; handoff summaries; override with rationale capture;

and click-through provenance).

Contributions. (1) A comprehensive HCI framework for human—AI collaboration in CDS; (2) an
empirical evaluation across contextual inquiry, controlled studies (N=72), and an eight-week field
deployment; (3) a set of parameterized UI components and a governance checklist that other teams
can adopt; (4) quantitative and qualitative evidence showing improved trust calibration, reduced

unnecessary interventions, and lower handoff friction without increasing decision time.
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2. Related Work

2.1. Trust, Uncertainty, and Calibration

Research in HCI and decision science shows that perceived confidence often misaligns with actual
model reliability. Communicating uncertainty through linguistic qualifiers (e.g., likely, unlikely) can
be accessible but imprecise, whereas numeric intervals may be precise but cognitively demanding.
Hybrid encodings—Ilinguistic labels augmented by numeric ranges—have been shown to improve
comprehension and calibration. In clinical HCI, such encodings must also support accountability,

enabling clinicians to justify actions in documentation and peer review.

2.2. Explainability and Actionability

Global feature importance and saliency maps are common, yet clinicians frequently ask: “What
would change your recommendation?” Contrastive and counterfactual explanations align with
hypothesis-testing workflows: they articulate which small, plausible changes in inputs would al-
ter the system’s output. However, explanations risk becoming persuasive narratives if detached

from data provenance and if they crowd out dissenting signals.

2.3. Workflow Integration and Interruption Management

CDS should align with temporal structures (triage, initial assessment, orders, handoff) and team
structures (attending, resident, nurse, specialist). Mistimed or modal alerts induce fatigue; poorly
summarized information increases screen-switching and documentation burden. Handoff tools that

condense key signals can reduce memory load and coordination friction.

2.4. Governance, Audit, and Override

Safety and legitimacy require traceable data lineage, immutable logs of recommendations and
actions, and easy pathways to override or annotate system outputs. Interfaces that normalize
override—by prompting for short rationales—help organizations learn where thresholds misfire and

where model retraining or policy updates are needed.

3. System Design

Our interface layer wraps an existing CDS model and exposes a set of Ul components grouped by

three layers.

3.1. Information Layer

Uncertainty-Aware Summaries A compact uncertainty badge pairs a categorical risk band
(e.g., medium) with a numeric interval (e.g., 18-26%) and an auto-generated one-sentence rationale.

To reduce cognitive load, badges collapse on small screens and expand on hover/click.

Progressive Disclosure via Evidence Cards Each recommendation links to a stack of evidence
cards: vitals and labs, history and notes excerpts, temporal trends. Cards render as concise tables
with outliers highlighted and include links to source systems (EHR modules) for drill-down.
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Contrastive and Counterfactual Explanations Contrastive prompts (“Why A and not B?”),
and counterfactuals (“If lactate < 2.0 mmol/L, risk | from high to medium”) provide small, plausible

changes clinicians can test with follow-up orders.

3.2. Coordination Layer

Interruption-Aware Delivery Low-priority suggestions appear as non-blocking banners; only

safety-critical thresholds trigger modals with concise justification and a one-click snooze.

Handoff Summaries A printable, one-page handoff view composes the current risk assessment,

recent trend deltas, outstanding uncertainties, and actions taken/overridden with timestamps.

Accountability Cues Compact indicators show who viewed, accepted, or overridden recommen-

dations and at what time; hovering reveals rationale snippets for quick context.

3.3. Governance Layer

Provenance and Data Lineage Every number links back to its source (timestamp, originating

system, last update). A provenance drawer lists data freshness and known gaps.

Override and Feedback Overrides are first-class: a single click to override, with a short text

RREN13

reason and optional tag (“contraindicated,” “patient preference,” “workflow mismatch”). Feedback

is used for threshold tuning and error triage.

Figure placeholder: Modular interface layer with Information / Coordination /

Governance components and data flows to EHR and audit store.

Figure 1: Architecture and UI component overview for the CDS interface layer.

4. Methods

4.1. Contextual Inquiry

We conducted 36 hours of observations across two EDs, sampling day /evening shifts. We performed
18 semi-structured interviews (6 attendings, 6 residents, 6 nurses). We mapped workflows, informa-
tion handoffs, and interruption points. Field notes were coded with a hybrid deductive—inductive

scheme focused on uncertainty, interruptions, and accountability artifacts (whiteboards, checklists).

4.2. Controlled Studies

We ran two between-subjects lab studies with practicing clinicians (N=72; randomized to condi-
tions). Participants completed 12 case vignettes per study, instrumented to log dwell time, advice

uptake, and follow-up orders.

Study A: Uncertainty Encoding Conditions compared: numeric-only intervals; linguistic-only
labels; hybrid labels+intervals (our proposed badge). Primary outcome: calibration error (absolute
difference between subjective trust rating and empirical case accuracy). Secondary: task time,

self-reported confidence.
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Study B: Explanation Pattern Conditions compared: global feature bars; example-based con-
trastive; counterfactual “what-if” snippets. Outcomes: appropriate next-step actions, unnecessary

interventions, subjective usefulness, and perceived persuasiveness.

4.3. Field Deployment

We deployed the interface in shadow mode for eight weeks over a live CDS model. The Ul rendered
recommendations and captured user actions but did not place orders. We recorded usage analyt-
ics, overrides, handoff usage, and decision time proxies (from interaction logs). Post-deployment

interviews (N=14) triangulated quantitative signals.

4.4. Measures and Analysis

Calibration error, over-/under-treatment rates, and handoff screen-switching were analyzed via
mixed-effects models with participant as random effect. Non-parametrics (Wilcoxon) were used
when normality assumptions failed. Qualitative data underwent thematic analysis with inter-rater
reliability (k = 0.81).

Table 1: Summary of participants and tasks across studies.

Study A Study B Field
Participants (N) 36 36 58 users
Cases per person 12 12 N/A

Primary outcomes Calibration Actionability Usage & Time

5. Results

5.1. Study A: Uncertainty Encoding

Hybrid badges reduced calibration error by 27% relative to numeric-only (95% CI: 14-39%, p < .01)
and by 19% vs. linguistic-only (95% CI: 7-31%, p = .004). Median task time differences were not
significant (43.2s, p = .18). Participants reported higher perceived clarity (Likert 5.9 vs. 4.8/5.1).

5.2. Study B: Explanation Pattern

Counterfactual explanations led to fewer unnecessary interventions (-14%, p < .05) and more
appropriate follow-up testing (+9%, p = .03), compared with feature bars. Contrastive examples
improved subjective understanding but were more persuasive; several participants reported feeling

“talked into” low-evidence actions unless provenance was visible.

5.3. Field Deployment

Handoff Efficiency The handoff view reduced screen-switching events by 22% per handoff
(IRR=0.78, p < .01) and improved perceived handoff quality (SUS: 78.9 vs. 68.2).
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Decision Time and Diagnostic Revisions Median decision time change was +6s (n.s.), while
post-hoc diagnostic revisions declined 19% relative to historical baseline (adjusted OR=0.81, p <
.05).

Overrides and Feedback Overrides clustered in borderline risk bands; rationale tags most com-

mon were “contraindicated” and “insufficient context.” Feedback suggested threshold recalibration

for elderly patients with atypical vitals.

Table 2: Key quantitative outcomes (mean change, significance).

Outcome Effect P
Calibration error -27% < .01
Unnecessary interventions -14% < .05
Screen-switching per handoff —22% < .01
Decision time (median) +6s 1.S.
Diagnostic revisions -19% < .05

6. Discussion

Our findings reaffirm that the value of CDS emerges from interaction design, not solely from pre-
dictive accuracy. Hybrid uncertainty badges provided enough numeric grounding to document
decisions while keeping cognitive overhead low. Counterfactuals aligned naturally with clinicians’
hypothesis testing: they made recommended next steps concrete without implying inevitability.
However, explanations can become too persuasive, which we observed when data provenance was
hidden; exposing lineage mitigated over-reliance.

Coordination design mattered as much as information design. Aligning notification timing
with workflow states (e.g., after vitals, before orders) reduced avoidable interruptions. Handoff
summaries translated model insights into team coordination artifacts, cutting screen-switching and
supporting mutual awareness.

Finally, governance features (override with rationale, immutable logs) created a feedback loop.
Overrides are not failure; they are signals for policy and threshold tuning. Institutionally, this

supports continuous improvement and creates a defensible audit trail.

Design Tensions We identify three tensions: (1) Transparency vs. overload: more detail aids
auditability but risks attention tax. Progressive disclosure is a pragmatic compromise. (2) Persua-
siveness vs. autonomy: compelling explanations aid adoption but can stifle dissent; provenance and
dissent cues restore balance. (3) Sensitivity vs. specificity: threshold tuning must consider subgroup

performance; interface-level tagging accelerates drift and bias detection.

7. Design Guidelines

1. Communicate uncertainty with hybrid encodings: pair linguistic labels with numeric

ranges; avoid single-point probabilities.
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2. Use counterfactuals for actionability: frame next steps as small, plausible changes; avoid

generic feature bars without context.

3. Adopt progressive disclosure: summary — key evidence — full provenance; make deep

dives on-demand.

4. Schedule recommendations to workflow states: deliver non-urgent advice as banners;

reserve modals for safety-critical events.

5. Normalize override and capture rationale: treat override as a first-class action; tag

common reasons to inform threshold tuning.

6. Expose data lineage and freshness: show timestamps, sources, and gaps; add warnings

when inputs are stale or missing.

7. Support handoffs explicitly: provide a printable, compact summary listing risks, uncer-
tainties, and actions taken/overridden.

8. Log for learning and accountability: keep immutable records of recommendations and

human actions to support audit and improvement.

8. Limitations

Despite the breadth of methods and the encouraging outcomes reported, several limitations qualify
the interpretation and generalizability of our findings. We group these limitations into five cat-
egories: setting and sampling, measures and prozies, intervention scope, threats to wvalidity, and

transferability and sustainability.

8.1. Setting and Sampling

Our empirical work was conducted in two urban emergency departments (EDs) within large aca-
demic hospitals. Although EDs share common time pressures and coordination demands, they
differ substantially from outpatient clinics, rural hospitals, and inpatient services in task structure,
staffing ratios, and documentation practices. The clinician cohort (N=72) represented attendings,
residents, and nurses who volunteered or were nominated by unit leadership; this introduces poten-
tial selection bias toward participants already interested in Al-enabled decision support. Moreover,
we did not sample night shifts at the same rate as day shifts, and staffing patterns (e.g., float-
ing nurses, cross-covering residents) may alter both interruption tolerance and handoff procedures,

thereby moderating interface effects.

8.2. Measures and Proxies

We relied on calibrated trust, task completion time, and post-hoc diagnostic revision rate as primary
outcomes. While each is motivated by prior work and safety reviews, none directly measures
patient-level endpoints (e.g., morbidity, mortality, length of stay). Revision rate is an informative
but imperfect proxy: it can reflect both desirable second-look behavior (detecting errors earlier) and
undesirable oscillation (overreaction to new evidence). Likewise, the NASA-TLX and SUS provide

established psychometric insight into workload and usability, but they may miss domain-specific
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burdens such as documentation overhead or medico-legal anxiety. Finally, our field deployment ran
in shadow mode—the AI did not place orders or automatically change care pathways—so effects

may differ when recommendations become executable orders with new accountability implications.

8.3. Intervention Scope

Our system layer is intentionally modular and model-agnostic, but it presupposes a certain class
of CDS: risk prediction with stable, periodically updated inputs (vitals, labs, short notes). We did
not evaluate interfaces for streaming signals (e.g., continuous telemetry), multimodal inputs (e.g.,
imaging viewers tightly coupled with CDS), or collaborative decision-making across multiple spe-
cialties (e.g., ED-to-ICU escalations). The counterfactual explanations rely on local approximations
around current inputs; they may be misleading in regions with sparse data or strong non-linear in-
teractions. Furthermore, progressive disclosure presumes adequate screen real estate and reliable
latency for on-demand fetching of evidence cards; in low-bandwidth or mobile-only contexts, the

pattern may require adaptation.

8.4. Threats to Validity

Internal validity. The controlled studies attempted to isolate uncertainty representation and
explanation type, but residual confounds (e.g., prior familiarity with traffic-light metaphors, variable
task difficulty across vignettes) cannot be fully excluded. We mitigated with randomization and
counterbalancing, yet order effects may persist.

Construct validity. Our calibrated trust metric compares subjective trust to empirical model
accuracy computed on held-out cases. If clinicians receive feedback on case outcomes unevenly (e.g.,
discharged patients with limited follow-up), their mental models of accuracy may drift in ways not
captured by our metric.

External validity. Interface improvements observed in ED triage may not transfer to domains
where the unit of analysis is longitudinal (e.g., chronic disease management) or collective (e.g.,
tumor boards). In specialties where image interpretation dominates, explanation desiderata likely
shift from counterfactuals over scalar labs to visual attention and exemplar-based comparison.

Statistical conclusion validity. Several effects are medium in size; with modest sample sizes
after stratification (e.g., nurse-only subgroup), certain interaction effects may be underpowered.

We report confidence intervals and encourage replication with larger, multi-site cohorts.

8.5. Transferability and Sustainability

Data drift and policy drift. Our deployment period (eight weeks) is insufficient to observe
seasonal epidemiology, staff turnover, or vendor EHR upgrades—all common sources of drift that
can invalidate thresholds and explanation templates.

Operational costs. The governance layer requires maintenance: provenance capture, audit
storage, and feedback triage. Institutions with constrained informatics staffing may struggle to
operationalize these practices without explicit resourcing.

Sociotechnical adoption. Even with favorable usability, adoption depends on local champi-
ons, training, and integration with existing quality and safety committees. We did not quantify the

training dose-response relationship or long-run shelf-life of the guidelines.
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8.6. Summary

These limitations motivate cautious interpretation and point to future work: longer and broader
deployments, patient-level outcome studies, evaluation with multimodal CDS, and cost—benefit

analyses that incorporate governance overheads and retraining pipelines.

9. Ethical Considerations

Deploying Al-mediated decision support in safety-critical care raises ethical questions beyond in-
terface comfort or productivity. We organize considerations across patient welfare, fairness and
bias, autonomy and informed use, accountability and auditability, data governance and privacy, and

sustainability and procurement.

9.1. Patient Welfare and Nonmaleficence

Any interface that changes attention patterns can inadvertently worsen outcomes by masking rare
but deadly conditions or by normalizing risky defaults. Our design avoids persuasive language that
could overstate certainty, surfaces explicit uncertainty ranges, and preserves clinician override with
minimal friction. We recommend unit-level safety gates for high-risk recommendations, prospective

monitoring for near misses, and rapid rollback procedures.

9.2. Fairness and Bias

Risk models may encode historical inequities (e.g., triage thresholds influenced by differential access
to care). Interfaces can amplify or mitigate bias depending on which evidence they foreground
and how uncertainty is framed. We advocate subgroup-aware monitoring dashboards, explanation
views that highlight sparse or low-quality inputs, and prompts that encourage clinicians to seek
corroborating evidence for borderline cases. Governance should require bias audits before and after
deployment, with clear escalation pathways when disparities are detected.

9.3. Autonomy, Informed Use, and Consent

Clinicians must understand the intended use and limitations of CDS. Progressive disclosure in-
cludes at-a-glance model scope, training data windows, and known exclusion criteria. For patients,
transparency about Al involvement varies by jurisdiction and institutional policy; where feasible,

consent materials should explain the role of decision support and data use in plain language.

9.4. Accountability and Auditability

When Al outputs are actionable, accountability becomes distributed among model developers,
health IT teams, and clinicians. Our governance layer captures immutable logs linking inputs,
outputs, user actions, and outcomes, supporting incident analysis without presupposing blame.
Audit trails must be protected from tampering yet accessible to safety officers; retention schedules

should align with medico-legal requirements.
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9.5. Data Governance and Privacy

Evidence cards draw from multiple systems (EHR vitals, labs, notes). Aggregation can expand
the attack surface. We recommend least-privilege data flows, encryption in transit and at rest,
and minimization (showing only necessary elements). Feedback mechanisms must avoid inserting
PHI into free-text fields where unnecessary; structured feedback (e.g., coded reasons for override)

reduces privacy risk and improves learnability for model updates.

9.6. Sustainability and Responsible Procurement

Institutions should evaluate life-cycle costs and environmental impact (compute, storage, retrain-
ing). Preference should be given to models and interface layers that support efficient inference,
scheduled retraining aligned to drift, and clear end-of-life plans. Procurement should require ven-

dors to provide transparency artifacts (model cards, data sheets) and to commit to security updates.

9.7. Ethical Review and Community Participation

IRB review covered our studies; ongoing ethics should include frontline staff in design governance,
patient representatives on oversight committees, and regular forums for surfacing harms and ben-
efits. Interfaces must include easy channels to report safety concerns that route to accountable

stewards.

9.8. Summary

Ethical deployment hinges on designing for uncertainty, preserving human agency, auditing for
equity, and institutionalizing transparent accountability. Interface craft alone is insufficient without

organizational commitments and resources.

10. Conclusion

This work frames clinical decision support as a human—computer interaction problem and pro-
poses a three-layer design approach—information, coordination, and governance—that demonstra-
bly improves calibrated trust and reduces unnecessary diagnostic revisions without inflating deci-
sion time. Across contextual inquiry, controlled comparisons, and field deployment, three patterns
consistently helped: (1) coupling linguistic uncertainty labels with numeric ranges, (2) offering con-
trastive/counterfactual explanations aligned with clinical reasoning, and (3) progressively disclosing
evidence to match evolving information needs.

Beyond immediate performance, the governance layer operationalizes transparency (provenance,
audit trails) and post-deployment learning (lightweight feedback loops). These mechanisms are

crucial for safe scaling across settings and for responsible response to drift and disparity.

10.1. Implications for Practice

Hospitals seeking to operationalize CDS should: (i) treat interface and governance requirements as
first-class in procurement, (ii) budget for monitoring and retraining as continuing costs, (iii) pilot
with mixed methods that combine usability metrics with safety reviews, and (iv) create escalation

pathways for bias and safety issues.
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10.2. Future Work

We aim to: (a) extend design patterns to multimodal CDS (imaging + text) and mobile contexts, (b)
evaluate long-term patient-level outcomes, (c) study organizational adoption dynamics (training,
incentives, safety culture), and (d) develop open reference implementations of provenance capture

and explainability that can be audited and reused across institutions.

10.3. Closing Remark

As CDS diffuses into everyday care, success will depend less on isolated model scores and more
on the sociotechnical craft of making the right information show up at the right time, in the right

form, with the right accountability. Our results offer concrete steps toward that goal.
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